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Abstract— We revisit the problem of reliable interactive com-
munication over a noisy channel, and obtain the first fully ex-
plicit (randomized) efficient constant-rate emulation procedure for
reliable interactive communication. Our protocol works for any
discrete memoryless noisy channel with constant capacity, and
fails with exponentially small probability in the total length of the
protocol.

Following a work by Schulman [Schulman 1993] our simulation
uses a tree-code, yet as opposed to the non-constructive absolute
tree-code used by Schulman, we introduce a relaxation in the notion
of goodness for a tree code and define a potent tree code. This
relaxation allows us to construct an explicit emulation procedure
for any two-party protocol. Our results also extend to the case of
interactive multiparty communication.

We show that a randomly generated tree code (with suitable
constant alphabet size) is an efficiently decodable potent tree
code with overwhelming probability. Furthermore we are able
to partially derandomize this result by means of epsilon-biased
distributions using only O(N) random bits, where N is the depth
of the tree.

1. INTRODUCTION

In this work, we study the fundamental problem of reliable
interactive communication over a noisy channel. The famous
coding theorem of Shannon [14] from 1948 shows how to
transmit any message over a noisy channel with optimal
rate such that the probability of error is exponentially small
in the length of the message. However, if we consider an
interactive protocol where individual messages may be very
short (say, just a single bit), even if the entire protocol itself
is very long, Shannon’s theorem does not suffice.

In a breakthrough sequence of papers published in 1992
and 1993 [10], [11], Schulman attacked this problem and
gave a non-constructive proof of the existence of a general
method to emulate any two-party interactive protocol such
that: (1) the emulation protocol only takes a constant-
factor longer than the original protocol, and (2) if the
emulation protocol is executed over a noisy channel, then
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the probability that the emulation protocol fails to return
the same answer as the original protocol is exponentially
small in the total length of the protocol. These results hold
for any discrete memoryless channel with constant capacity,
including the important case of a binary symmetric channel1

with some constant crossover probability less than 1
2 .

Unfortunately, Schulman’s 1992 emulation procedure [10]
either required a nonstandard model in which parties al-
ready share a large amount of randomness before they
communicate, where the amount of shared randomness is
quadratic in the length of the protocol to be emulated2, or
required inefficient encoding and decoding. On the other
hand, Schulman’s 1993 emulation procedure [11] is non-
constructive in that it relies on the existence of absolute
tree codes3. The only known proofs of the existence of
absolute tree codes are non-constructive, and finding an
explicit construction remains an important open problem.
Indeed picking a tree code uniformly at random almost
surely results in a bad tree code.
Our Results. In this work, we revisit the problem of reliable
interactive communication, and give the first fully explicit
emulation procedure for reliable interactive communica-
tion over noisy channels with a constant communication
overhead. Our results hold for any discrete memoryless
channel with constant capacity (including the binary sym-
metric channel), and our protocol achieves failure probability
that is exponentially small in the length of the original
communication protocol4. To obtain this result, we do the
following:
• We introduce a new notion of goodness for a tree code,

and define the notion of a potent tree code. We believe
that this notion is of independent interest.

• We prove the correctness of an explicit emulation

1The binary symmetric channel with crossover probability p is one that
faithfully transmits a bit with probability 1 − p, and toggles the bit with
probability p.

2Note that in Schulman’s 1992 shared randomness protocol (called the
“public coin” protocol in that paper [10]), if the parties communicated the
shared randomness to each other, this would result in an inverse polynomial
rate for the protocol overall. Schulman obtained his main result in the
standard model (called the “private coin” model there) by applying an
inefficient transformation, that destroys explicitness.

3We note, with apology, that what we are calling an “absolute tree code”
is what Schulman calls a “tree code.” We make this change of terminology
because we will introduce an alternative relaxed notion of goodness for a
tree code that will lead to our notion of a “potent tree code.”

4Here we assume that we know the length of the protocol in advance.



procedure based on any potent tree code. (This replaces
the need for absolute tree codes in the work of Schul-
man [11].) This procedure is efficient given a black box
for efficiently decoding the potent tree code.

• We show that a randomly generated tree code (with
suitable constant alphabet size) is a potent tree code
with overwhelming probability. Furthermore, we show
that a randomly generated tree code (when combined
with a good ordinary error-correcting code) can be ef-
ficiently decoded with respect to any discrete memory-
less channel with constant capacity with overwhelming
probability.

• Finally, we are able to partially derandomize the above
result by means of epsilon-biased distributions. Specifi-
cally, using highly explicit5 constructions of small bias
sample spaces [1], we give a highly explicit description
of what we call small bias tree codes of depth N
using only O(N) random bits. We show that such small
bias tree codes are not only potent with overwhelming
probability, but that the efficient decoding procedure
above still works for any discrete memoryless channel
with constant capacity.

With the above work done, our result is immediate: Since
only O(N) random bits are needed for choosing a small bias
tree code, these random bits can be chosen once and for all,
encoded using an ordinary block error-correcting code, and
sent to the other party. Then a deterministic procedure can
be used to finish the protocol.

We then present an alternative explicit randomized con-
struction of potent tree codes that achieves better potency,
but with somewhat higher probability of failure. Our con-
struction is first based on the observation that the above
application of epsilon-biased sample spaces can be applied to
partially derandomizing random linear tree codes, achieving
the same level of potency as small bias tree codes. We can
then compose such codes with explicit constructions of weak
tree codes [13] which guarantee good distance for all length
c logN length divergent paths. This composition (which
works by simply concatenating symbols) achieves potency
for sub-constant ε with probability of failure exponentially
small in εN .

We use this improved construction to extend our result
to the case of any number of parties. Our explicit emulation
procedure will have a O(logm) slowdown for m parties (re-
gardless of the length of the protocol). To obtain our result,
we adapt the (non-explicit) emulation procedure based on
absolute tree codes given by Rajagopalan and Schulman [8],
that achieved the same asymptotic slowdown of O(logm).

Also, another result we obtain relates to the recent work
of Braverman and Rao [2]. They give a new simulation
procedure, again based on absolute tree codes, which uses a
constant-sized alphabet and succeeds against an adversarial

5By a “highly explicit” object, we mean that the ith bit of the object
should be computable in time polylogarithmic in the size of the object.

channel as long as the fraction of errors is at most 1/4− ε
(the simulation tolerates a 1/8− ε error fraction when using
a binary alphabet). These results improve over the result of
Schulman which can only tolerate a fraction of errors that
is below 1/240. We further demonstrate the applicability
of potent tree codes by showing that the same result can
be obtained once again by replacing an absolute tree code
with a potent tree. However, like all previous work on
the adversarial error case, we cannot efficiently perform
the decoding steps needed in order to run the simulation
procedure.

Our approach. We begin our investigation by asking the
question: What properties does a tree code need in order
to be useful for emulating protocols over noisy channels?
(Without loss of generality, assume that protocols only
exchange one bit at a time from each party.) For the purpose
of this paper, a tree code is simply any deterministic on-line
encoding procedure in which each symbol from the input
alphabet Σ is (immediately) encoded with a single symbol
from the output alphabet S, but the encoding of future input
symbols can depend on all the input symbols seen so far.
As such, any such deterministic encoding can be seen as a
complete |Σ|-ary tree with each edge labeled with a single
symbol of the output alphabet S.

P

1

P’

Figure 1. A very bad tree code

The usefulness of some kind of tree code for protocol
emulation seems immediate, since each party must encode
the bit it needs to send, before knowing what other bits
it needs to send later (which it will not know until it
receives messages from the other party). Let us associate
every path from the root to a node in the tree code with
the concatenation of output symbols along that path. Then,
at first glance, it may appear that all we need from the
tree code is for “long-enough” divergent paths to have
large relative Hamming distance. That is, suppose that the
tree code illustrated in Figure 1 has the property that the
relative Hamming distance between the path from node 1
to P and the path from node 1 to P’ is very small, even
though each of those paths is long. This would certainly be
problematic since the protocol execution corresponding to
each path could be confused for the other. As long as all
long divergent paths had high Hamming distance, however,
it seems plausible that eventually the protocol emulation
should be able to avoid the wrong paths. Also, it is important



to note that with suitable parameters, a randomly generated
tree code would guarantee that all long divergent paths
have high relative Hamming distance with overwhelming
probability.

However, this intuition does not seem to suffice, because
while the protocol emulation is proceeding down an incor-
rect path, one party is sending the wrong messages – based
on wrong interpretations of the other party’s communication.
After a party realizes that it has made a mistake, it must then
be able to “backtrack” and correct the record going forward.
The problem is that even short divergent paths with small
relative Hamming distance can cause problems. Consider
the tree code illustrated in Figure 2. In this figure suppose
the path along the nodes 1, 2, and 3 is the “correct” path,
but that the short divergent paths from 1 to A, 2 to B,
and 3 to C all have small relative Hamming distance to
the corresponding portions of the correct path. Then in the
protocol emulation, because of the bad Hamming distance
properties, the emulation may initially incorrectly proceed to
node A, and then realize it made a mistake. But instead of
correcting to a node on the correct path, it might correct to
the node A’ and proceed down the path to B. Then it may
correct to B’, and so on. Because the protocol emulation
keeps making mistakes, it may never make progress towards
simulating the original protocol.

1

2

3
A

B
C

A’
B’

Figure 2. A bad tree code

Schulman [11] dealt with this problem by simply insisting
that all divergent paths have large relative Hamming distance
in his definition of an absolute tree code. This would
prevent all such problems, and guarantee that any errors in
emulation could be blamed on channel errors. The downside
of this approach is that randomly generated tree codes would
have short divergent paths with small (even zero) relative
Hamming distance with overwhelming probability, and thus
would not be absolute tree codes.

Our main observation is that this requirement goes too far.
If a tree code has the property that for every path from root
to leaf, there are only a few small divergent branches with
low relative Hamming distance (as illustrated in Figure 3),
then the emulation protocol will be able to recover from
these few errors without any problems. We call such tree
codes potent tree codes since they are sufficiently powerful
to enable efficient and reliable interactive communication

over a noisy channel.

Figure 3. A potent tree code

More precisely, let ε and α be two parameters from the
interval [0, 1]. Define a path from node u to a descendant
node v (of length `) to be α-bad if there exists a path
from u to another descendant node w (also of length `)
such that u is the first common ancestor or v and w, and
the Hamming distance between the u-v path and the u-w
path is less than α`. (Note that the u-v path and the u-w
path must diverge at u, since u is the first common ancestor
of v and w.) Then an (ε, α)-potent tree code of depth N is
such that for every path Q from root to leaf, the number of
nodes in the union of all α-bad paths contained in Q is at
most εN .

We show that randomly generated tree codes (with suit-
able constant alphabet sizes) are potent tree codes with over-
whelming probability. As hinted above, because every root-
leaf path has good properties, a potent tree code will work
for emulating any (adversarially chosen) interactive protocol.
With some additional randomization, we show that within
such emulations, decoding of a randomly generated potent
tree code can be done efficiently even for an adversarially
chosen protocol.

Naturalness of our definition. We can elucidate the rela-
tionship between potent tree codes and Schulman’s absolute
tree codes through an analogy with ordinary error correcting
codes. Here, potent tree codes with ε = 0 correspond to
maximum distance separable (MDS) codes, yet just as MDS
codes are powerful and useful objects, but not necessary for
most applications, so too we can regard Schulman’s absolute
tree codes as powerful and useful, but not necessary for im-
portant applications like reliable interactive communication
where potent tree codes suffice.

Other Related Work. Peczarski [7] provides a ran-
domized way for constructing absolute tree codes. The
construction succeeds with probability 1− ε using alphabet
with size proportional to ε−1. Therefore, using Peczarski’s
method to construct an absolute tree code with exponentially
small failure probability ε, yields a polynomial slowdown; or
a sub-linear but super-logarithmic slowdown if ε is negligible
(in the length of the simulated protocol). Other methods for
constructing an absolute tree code are reported by Schul-
man [13], yet they require polynomial-size alphabet (in the
depth of the tree), resulting in a logarithmic slowdown using



Schulman’s emulation [11]. Schulman [13] also provides
methods for constructing tree codes with weaker properties
such as satisfying the Hamming distance property for only a
logarithmic depth (which yields a failure probability that is
inverse-polynomial). Ostrovsky, Rabani, and Schulman [6]
consider a relaxed problem of communication for control of
polynomially bounded systems, and gave explicit construc-
tions of codes suitable for that setting.

2. PRELIMINARIES

We begin with several definitions that we use later. Unless
otherwise mentioned, we use base 2 for all logarithms. Our
model of communication assumes that some noisy discrete
memoryless channel affects all communication between par-
ties. A representative example of such a channel is the binary
symmetric channel:

Definition 1. A binary symmetric channel (BSC) with error
probability pBSC is a binary channel {0, 1} → {0, 1} such
that each input bit is independently flipped with probability
pBSC .

This channel is memoryless because conditioned on any
bit in the input stream, the corresponding output bit is
independent of all other bits in the input.

Shannon’s coding theorem asserts the existence of an
error-correcting code that reduces the error probability (for a
single message) to be exponentially small, while increasing
the amount of transmitted information by only a constant
factor. We will not define the notion of a channel capacity
formally, but for a binary symmetric channel with pBSC <
1/2, the corresponding channel capacity C is strictly greater
than zero.

Lemma 2.1 (Shannon Coding Theorem [14]). For any
discrete memoryless channel T with capacity C, an alphabet
S and any ξ > 0, there exists a code enc : S → {0, 1}n
and dec : {0, 1}n → S with n = O( 1

C ξ log |S|) such that

Pr [dec(T (enc(m))) 6= m] < 2−Ω(ξ log |S|).

This coding theorem will not be sufficient for coding in
the context of interactive communication, since it assumes
the entire messages is known to the encoding procedure. We
require an encoding scheme in which the prefix of a message
can be encoded independently of later bits in the message.
The main structure we use is a tree code, introduced by
Schulman [11], [12].

Definition 2. The Hamming distance ∆(σ, σ′) of two strings
σ = σ1 . . . σm and σ′ = σ′1 . . . σ

′
m of length m over an

alphabet S, is the number of positions i such that σi 6= σ′i.

A tree code is a (usually regular) tree for which every arc i
in the tree is assigned a label σi over some fixed alphabet S.
Denote with w(s) the label of the arc between a node s and
its parent, and with W (s) the concatenation of the labels
along the path from root to s. We associate a message with

a root-to-leaf path, encoded as the symbols along the path. In
a typical application, one requires a tree code to have good
“distance” properties — divergent paths must be far apart in
Hamming distance. We call these tree codes (as introduced
by Schulman [12]), absolute tree codes:

Definition 3 (Tree Codes [12]). An absolute d-ary tree code
over an alphabet S, of distance parameter α and depth N ,
is a d-ary tree code such that for every two distinct nodes
s and r at the same depth,

∆(W (s),W (r)) ≥ αl,

where l is the distance from s and r to their least common
ancestor.

It is shown in [12] that for every distance parameter
α ∈ (0, 1), there exists an absolute d-ary tree code of
infinite depth, labeled using |S| ≤ 2b(2d)

1
1−α c−1 symbols.

Although these tree codes are known to exist, finding an
efficient, explicit construction remains an open question.

Tree codes can be used to communicate a node u between
the users, by sending the labels W (u). Decoding a trans-
mission means recovering the node at the end of the route
defined by the received string of labels. In order to reduce
the error probability of the label transmission, each label
is separately coded using a standard error-correcting code.
Note that the incremental communication cost of specifying
a node v that is a child of u, after already transmitting
the string W (u) is just the cost of communicating the
symbol w(v). Our goal in most applications is to choose
S to be constant-sized.

3. POTENT TREE CODES

3.1. Potent Tree Codes and Their Properties

We now formally define the set of potent trees and its
complement, the set of bad trees. The latter contains trees
that are not useful for our purpose: at least one of their paths
is composed of “too many” sub-paths that do not satisfy the
distance condition, i.e., the total length of these sub-paths
is at least ε fraction of the tree depth N , for some fixed
constant ε > 0.

Definition 4. Let u, v be nodes at the same depth h of a
tree-code, and let w be their least common ancestor, located
at depth h− `. We call the nodes u and v α-bad nodes (of
length `) if ∆(W (u),W (v)) < α`. Also, we call the path (of
length `) between w and u an α-bad path (similarly, the path
between w and v would also be a bad path). Additionally,
we call the interval [h−`, h] an α-bad interval (of length `).

Definition 5. An (ε, α)-bad tree is a tree of depth N
that has a path Q for which the union of α-bad intervals
corresponding to the α-bad subpaths of Q has total length
at least εN . If the tree is not (ε, α)-bad tree, then we will
call it an (ε, α)-potent tree code.



We stress that a bad tree is not necessarily bad in all of its
paths, since the existence of a single bad path is sufficient.

Suppose we randomly pick each label of the tree – call
this construction a Random Tree Code (RTC). A RTC is a
potent tree except with probability exponentially small in the
depth of the tree (see details in [4]). The drawback of such a
construction is that its description is exponential. However,
we observe that requiring the entire tree to be random can
be replaced with requiring any two paths along the tree to
be independent. Using a method of Alon, Goldreich, Håstad
and Peralta [1] we are able to construct a tree in which any
two paths are almost independent – and we call such a code
a Small-Biased Tree Code (SBTC). Moreover, such a tree
has an efficient description and the randomness required to
seed the construction is proportional to the depth of the tree
(and hence the total communication required by the original
protocol).

3.2. Small-Biased Random Trees as Potent Trees

In order to agree on a RTC with alphabet S, the users
need to communicate (or pre-share) O(dN log |S|) random
bits. Surprisingly, we can reduce the description size to
O(N log |S|) and still have a potent code with overwhelming
probability. To accomplish this, we make use of Alon et al.’s
construction of a sample space with an efficient description
that is ε-biased [1].

Definition 6 (ε-biased sample space [5], [1]). A sample
space X on n bits is said to be ε-biased with respect to
linear tests if for every sample x1 · · ·xn and every string
α1 · · ·αn ∈ {0, 1}n r {0}n, the random variable y =∑n
i=1 αixi mod 2 satisfies |Pr[y = 0]− Pr[y = 1]| ≤ ε.

We use [1, Construction 2] to achieve a sample space Bn

on n bits which is ε-biased with respect to linear tests.
Let p be an odd prime such that p > (n/ε)2, and let χp(x)
be the quadratic character of x (mod p). Let Bn be
the sample space described by the following construction.
A point in the sample space is described by a number
x ∈ [0, 1, . . . , p − 1], which corresponds to the n-bit string
r(x) = r0(x)r1(x) · · · rn−1(x) where ri(x) =

1−χp(x+i)
2 .

Proposition 3.1 ([1], Proposition 2). The sample space Bn

is n−1√
p + n

p -biased with respect to linear tests.

We use this to construct a d-ary tree code of depth N
with labels over an alphabet S. Without loss of generality
we assume that |S| is a power of 2, and describe the tree as
the dN log |S|-bit string constructed by concatenating all the
tree’s labels in some fixed ordering. Since each n-bit sample
describes a tree-code, we are sometimes negligent with the
distinction between these two objects.

Definition 7. A d-ary Small-Biased Tree Code (SBTC) of
depth N , is a tree described by a sample from the sample
space Bn with n = dN log |S|, ε = 1/2cN log |S| for some
constant c which we choose later.

We note that small-bias trees have several properties
which are very useful for our needs. Specifically, every set
of labels are almost independent.

Definition 8 (almost k-wise independence [1]). A sample
space on n bits is (ε, k)-independent if for any k positions
i1 < i2 < · · · < ik and k-bit string ξ,

|Pr[xi1xi2 · · ·xik = ξ]− 2−k| ≤ ε

Due to a lemma by Vazirani [15] (see also Corollary 1
in [1]), if a sample space is ε-biased with respect to linear
tests, then for every k, the sample space is ((1− 2−k)ε, k)-
independent. Thus, Bn is (ε, k)-independent, for any k.

Corollary 3.2. Let T be a d-ary SBTC of depth N , then any
k labels of T are almost independent, that is, any k log |S|
bits of T ’s description are (2−cN log |S|, k)-independent.

Finally, let us argue that such a construction is efficient
(i.e., highly explicit). Let p = O((n/ε)2) and assume
a constant alphabet |S| = O(1). Each sample x takes
log p = O(N) bits, and each ri(x) can be computed by
poly(N) operations.

We now prove a main property about SBTCs. Except with
negligible probability, a SBTC is potent.

Theorem 3.3. Suppose ε, α ∈ (0, 1). Except with probability
2−Ω(N), a d-ary SBTC of depth N over alphabet |S| >
(2d)(2+2/ε)/(1−α) is (ε, α)-potent.

Proof: We show that the probability of a d-ary SBTC
of depth N to be (ε, α)-bad is exponentially small for a
sufficiently large constant size alphabet S.

For a fixed node v, we bound the probability that v is α-
bad of length l, i.e., the probability that there exists a node
u at the same depth as v which imposes a bad interval of
length l. Denote by Wl(u) the last l labels of W (u). Since
the tree is (1/2cN log |S|, 2l log |S|)-independent, then Wl(u)
and Wl(v) are almost independent.

Lemma 3.4. For any two nodes v, u at the same depth with
a common ancestor l levels away,

Pr[∆(W (u),W (v)) = j] ≤
(

l

l − j

)(
1

|S|

)l−j
+ 2−Ω(N).

Proof: Note that W (u) and W (v) are identical ex-
cept for the last l labels. Using the fact that the la-
bels are almost independent we can bound the probability
Pr[∆(W (u),W (v)) = j] ≤ (2−2l log |S| + 2−cN log |S|) ×
22l log |S|( l

l−j
) (

1
|S|

)l−j ( |S|−1
|S|

)j
. Choosing c > 3 com-

pletes the proof. For the ease of notation, in the following

we use 2
(
l
l−j
) (

1
|S|

)l−j
as an upper bound of the above

probability.
The above lemma leads to the following bound on the

probability that two (fixed) nodes at the same depth are α-
bad.



Corollary 3.5. Pr[∆(W (v),W (u)) ≤ αl] ≤ 2 2l

|S|(1−α)l .

For a fixed node v, the probability that there exists a node
u 6= v with least common ancestor l level away such that
v and u do not satisfy the distance requirement, is bounded
by
∑
u 2 2l

|S|(1−α)l ≤ 2(2d/|S|1−α)l, using a union bound.
Assume that the tree is bad, that is, there exists a path from

root to some node z with bad intervals of total length εN .
Due to the following Lemma 3.6 there must exist disjoint
bad intervals of total length at least εN/2. Note that there
are at most

∑N
j=εN/2

(
N
j

)
≤ 2N ways to distribute these

disjoint intervals along the path from root to z.

Lemma 3.6 ([12]). Let `1, `2, . . . , `n be intervals on N,
of total length X . Then there exists a set of indices
I ⊆ {1, 2, . . . , n} such that the intervals indexed by I are
disjoint, and their total length is at least X/2. That is, for
any i, j ∈ I , `i ∩ `j = ∅, and

∑
i∈I |`i| ≥ X/2.

A proof is given in [12].
Consider again the path from root to z, and the disjoint

bad intervals of total length at least εN/2 along it. There
are at most 2N labels involved (along both the path to z
and the colliding paths). Since the intervals are disjoint,
their probabilities are almost independent as well, and the
probability that a specific pattern of intervals happens is
bounded by the product of these probabilities. Hence, the
probability for a SBTC to be (ε, α)-bad is bounded by

Pr[ SBTC is (ε, α)-bad ]

≤
∑
z

∑
`1,`2,... disjoint,
of length≥εN/2

∏
i

2(2d/|S|1−α)`i

≤ dN · 2N (4d/|S|1−α)
∑
i `i ≤ (2d)N (4d/|S|1−α)εN/2

which is exponentially small in N for a constant alphabet
size |S| > (4d · (2d)2/ε)1/(1−α).

4. INTERACTIVE PROTOCOL OVER NOISY CHANNELS

We consider a distributed computation of a fixed func-
tion f , performed by two users who (separately) hold the
inputs. Let π be a 2-party distributed protocol which on
inputs xA, xB , both parties output the value f(xA, xB).
In each round, A and B send a single message to each
other, based on their input and messages previously received.
The protocol π assumes an ideal communication channel
which contains no errors. Under these assumptions, π takes
T rounds of communication to output the correct answer,
where one round means both users simultaneously send each
other a message. We can assume that in each round the users
send only a single bit, which is the worst case in terms of
the communication complexity.

Let us formalize this model of interactive communication
and the associated protocol π. During each round, each user
i ∈ {A,B} sends one bit according to its input xi and the
messages received so far. Let πi(xi, ∅) denote the first bit
sent by user i, and let π(x, ∅) ∈ {00, 01, 10, 11} be the two

bits transmitted in the first round by A and B respectively,
where x = xAxB . Generally, let m1, . . . ,mt be the first t
two-bit messages exchanged during the protocol, then the
information sent in round t+1 is defined by π(x,m1 . . .mt).

GameTree

00 01

00 01 10 11

10 11

Figure 4. The GameTree

The computation (over a noiseless channel) can be de-
scribed as a single route γπ,x along the GameTree, a 4-ary
tree of depth T (see Figure 4). The path γπ,x begins at the
root of the tree and the tth edge is determined by the 2
bits exchanged in the tth round, i.e., the first edge in the
path is π(x, ∅), the second is π(x, π(x, ∅)), etc. Also, for a
vertex v ∈ GameTree, let πi(xi, v) be the bit transmitted by
user i at some round t+1 = depth(v)+1 if the information
received in the previous t rounds is the labels along the path
from root to v.

5. POTENT TREES APPLICATIONS

Here we demonstrate how to replace the standard usages
of absolute tree codes with potent tree codes. No efficient
decoding procedures (or even explicit constructions) are
known for absolute tree codes and hence simulation pro-
tocols based on absolute tree codes are non-constructive.
However, over any discrete memoryless (of constant rate)
we are able to use potent tree codes to obtain the first fully
explicit (randomized) constant-rate emulation procedure for
reliable interactive communication. Our protocol fails with
only exponentially small probability.

5.1. Simulation with Adversarial Errors
In a recent paper [2] Braverman and Rao show how to

simulate any 2-party protocol over an adversarial channel,
as long as the fraction of errors is at most 1/4− ε2, for any
constant ε2 > 0. Their simulation is also based on absolute
tree codes.

We show that the analysis of Braverman and Rao can be
repeated using a (ε1, 1−ε2)-potent tree instead of an absolute
tree code, and withstands error rate of up to 1/4− 2ε1− ε2.
Intuitively, for every node which is not (1 − ε2)-bad, the
potent tree code behaves exactly like an absolute tree code
(i.e., each decoding error can be blamed on an unusually
high fraction of channel errors in some interval). On the
other hand, for every possible path along the potent tree,
there are at most ε1N nodes which are (1− ε2)-bad, that is,
at most ε1N additional times in which the scheme differs



from an absolute tree code (in each one of the directions of
communication). This gives an algorithm that withstands up
to 1/4− (2ε1 + ε2) fraction of (adversarial) errors.

Theorem 5.1. For any 2-party binary protocol π and any
constant ε > 0 there exist a protocol Π that simulates π over
an adversarial channel in which the fraction of errors is at
most 1/4 − ε, uses potent tree-codes with a constant-sized
alphabet and imposes a constant slowdown.

We re-iterate that like all previous work on the adversarial
error case, we cannot efficiently perform the decoding steps
needed in order to run the simulation procedure. The proof
is omitted due to space limitations.

5.2. Efficient Simulation with Random Errors

In the case of a noisy channel, our simulation (based
on potent tree-codes) can also be implemented efficiently
and fails only with exponentially-small probability. In 1992
Schulman proposed an efficient randomized scheme that
solves this problem [10] in an alternative non-standard
model which requires a quadratic number of shared random-
ness between parties ahead of time6. By using potent trees
(realized via SBTCs), we improve the result of Schulman
and obtain a linear communication (i.e., a constant dilation)
which includes the communication required to agree on the
same SBTC. The scheme we obtain is efficient and construc-
tive. We then extend our proof to any multiparty protocol
following the analysis of Rajagopalan and Schulman [8],
again, by replacing an absolute tree code with a potent tree.

Our goal is to simulate a run of π over a noisy channel.
In order to do so, we use the method of Schulman [12].
The idea behind the simulation is the following. Each user
keeps a record of (his belief of) the current progress of π,
described as a pebble on one of the GameTree nodes.

Each round, according to the transmissions received so far,
the user makes a guess for the position of the other user’s
pebble, and infers how his own pebble should move. The
user sends a message that describes the way he moves his
pebble (out of six possible movements corresponding to the
4 child nodes, ‘H’ to keep the pebble at the same place or ‘B’
to back up to the parent node) and his output bit according
to his current position on the GameTree. Each one of these
12 options represents a child in a 12-ary tree denoted as
the StateTree (Figure 5). The user communicates7 the label
assigned to the edge in the StateTree that describes his
move. The state of the user is the current node on the
StateTree, starting from its root, and changing according to

6The trivial way to convert this protocol to the standard model without
shared randomness would be to have one user send this shared randomness
to the other. However, no efficient derandomization is known so far,
although Schulman gave an inefficient method to reduce the number of
bits required to linear in the depth, sacrificing efficiency of the simulation.

7We imply here using a (standard) error-correcting code in order to send
the label over the noisy channel, with constant slowdown (as given by
Lemma 2.1). Throughout the paper, any transmission of a label is to be
understood in this manner.

StateTree

00x0 00x1 01x0 01x1 10x0

. . .

10x1 11x0 11x1 Hx0 Hx1 Bx0 Bx1

Figure 5. The StateTree

the edge communicated. The protocol is given in Figure 6
(described for user A; the protocol for B is identical).

Begin with own pebble at the root of GameTree and own
state SA at the StateTree root’s child labeled H×πA(xA, ∅).
Repeat the following N times8:

1) Send w(SA) to user B.
2) Given the sequence of messages Z received so far from

user B, guess the current state g of B as the node
that minimizes ∆(W (g), Z). From g, infer B’s assumed
pebble position, pebble(g), as well as B’s assumed
message b = πB(xB , pebble(g))

3) Set own pebble’s movement and new state according to
the current position v of your pebble:
a) If v = pebble(g) then move pebble according to the

pair of bits (πA(xA, v), b) to a state v′. The new state
is SA’s child labeled with the arc (πA(xA, v), b) ×
πA(xA, v

′).
b) If v is a strict ancestor of pebble(g): own movement is

H , and the next state is along the arc H×πA(xA, v).
c) Otherwise, move pebble backwards. New state is

along the arc B × πA(xA, v
′) where v′ is the parent

of v.

Figure 6. Interactive protocol Simπ for noisy channels [12]

Informally speaking, the simulation works since the least
common ancestor of both users’ pebbles always lie along the
path γπ,x. If both users take the correct guess for the other
user’s pebble position, they simulate π correctly and their
pebbles move along γπ,x. Otherwise, their pebbles diverge,
yet the common ancestor remains on γπ,x. On the following
rounds, when the users acknowledge an inconsistency in the
pebbles’ positions, they move their pebbles backwards until
the pebbles reach their common ancestor, and the protocol
continues. Repeating the above process for N = O(T )
rounds is sufficient for simulating π with exponentially small
error probability (over the channel errors). We refer the

8For the simulation to be well defined, we must extend π to N rounds.
We assume that in each of the N − T spare rounds, π outputs 0 for each
user and every input.



reader to [12] for a detailed description of the protocol and
its analysis.

We now replace the (non-constructive) absolute tree code
originally used by Schulman by a potent tree, and show that
the simulation still succeeds with overwhelming probability.
Moreover, if we are given an oracle to a tree code decoding
procedure, the obtained protocol is efficient.

Theorem 5.2. Given a ( 1
10 , α)-potent tree code with a

constant-size alphabet |S|, an oracle for a decoding pro-
cedure of that tree code, and a protocol π of length T ,
the protocol Simπ (Figure 6) efficiently simulates π, takes
N = O(T ) rounds and succeeds with probability 1−2−Ω(T )

over the channel errors, assuming an error correcting code
with (label) error probability p < 2−42/α.

(Proof Sketch.) The argument in [12] proceeds by defining
a bad move as an erroneous step in the simulation that
requires us to back up and re-simulate that step. A good
move can either undo an erroneous move or (if no erroneous
moves are left to undo) advances the simulation of π in
one step. Schulman demonstrates that with overwhelming
probability the bad moves are a small fraction of the total
moves, and thus the simulation succeeds. The relaxation of
absolute tree codes to potent tree codes introduces a new
source of error — namely decoding errors can be caused
not just by channel errors but also by tree defects. Yet in a
potent tree these tree defects are infrequent enough so that
even when each defect counts as a bad move, their total
number is small. It follows that if a simulation failed, the
number of bad-moves must be large, and since the number
of bad moves accounted to tree defects are small, the rest of
the bad moves must be accounted to channel errors, which
happens with a negligible probability. We defer the proof of
Theorem 5.2 to the full version of our paper.

In Section 6.1 we show a decoding procedure that is
efficient on average, given that the tree is SBTC. This
immediately leads to the following Theorem.

Theorem 5.3. There exists an efficient simulation that
computes any distributed 2-party protocol π of length T ,
using a BSC for communication and a pre-shared SBTC.
The simulation imposes a constant slowdown, and succeeds
with probability 1−2−Ω(T ) over the channel errors and the
choice of the SBTC.

In Section 6.3 we construct more potent tree codes. This
is crucial in order to obtain efficient simulation in the m-
party case with the same dilation factor as achieved by
Rajagopalan and Schulman [8].

Theorem 5.4. There exists a constructible and efficient
simulation that computes any n-party protocol π of length
T using a BSC for communication. The simulation succeeds
with probability 1−2−Ω(T ), and imposes a dilation of O(m).

We omit the proof due to space limitation. Rajagopalan
and Schulman [8] give a dilation of O(log(r + 1)) where

r ≤ m is the maximum degree. We achieve an improved
O(log(r+ 1)) dilation too, yet our failure probability mod-
estly increases to 2−Ω(T/m).

6. EXTENSIONS

Here we give a number of extensions which are useful
in giving additional applications of potent tree codes. In
Section 6.1 we give an efficient decoding procedure (when
using a potent tree code) over a discrete memoryless chan-
nel. In Section 6.2 we extend our simulation procedure to
the case in which an adversary can choose the protocol π
to be simulated, after our simulation chooses a potent tree
code. Finally, in Section 6.3 we give a construction for more
potent tree codes, which are needed in order to obtain the
best-known dilation factor for m-party computation using
potent tree codes rather than absolute tree codes.

6.1. Performing decoding in an efficient way

A decoding process outputs a node u (at depth t)
that minimizes the Hamming distance ∆(W (u), r), where
r = r1r2 · · · rt is the received string of labels. Although the
above Theorem 5.2 is proven assuming an oracle to tree-
code decoding procedure, this requirement is too strong for
our needs. Since we count any node which is α-bad as an
error (even when no error has occurred), it suffices to have
an oracle that decodes correctly given that the (transmitted)
node is not α-bad.

We follow techniques employed by Schulman [12] (which
are based on ideas from [16], [9], [3]), and show an efficient
decoding that succeeds if the node is not α-bad. While
the decoding process of [12] is based on the fact that the
underlying tree is an absolute tree code, in our case the tree
code is a SBTC.9

The decoding procedure is the following. For a fixed
time t, let gt−1 be the current guess of the other user’s state,
and denote the nodes along the path from root to gt−1 as
g1, g2, . . . , gt−1. Set gt to be the child node of gt−1 along
the arc labeled with rt, if such exists (break ties arbitrarily).
Otherwise, set gt as an arbitrary child of gt−1.

Recall that Wm(u) denotes the m-suffix of W (u),
i.e., the last m labels along the path from the tree’s
root to u. We look at the earliest time i such that
∆(riri+1 · · · rt,Wt−i+1(gt)) ≥ α(t − i)/2. For that spe-
cific i, exhaustively search the subtree of gi and output the
node u (at depth t) that minimizes the Hamming distance
∆(r1r2 · · · rt,W (u)).

Note that when gt is an α-bad node of maximal length l,
any path from root to some other node g′t, where the least
common ancestor of gt and g′t is located l′ > l levels away,
must have a Hamming distance ∆(Wl′(gt),Wl′(g

′
t)) ≥ αl′.

Therefore, if all the suffixes of length l′ > l satisfy
∆(rt−l′+1 · · · rt,Wl′(gt)) < αl′/2, we are guaranteed to
find the node minimizing the Hamming distance within the

9A similar proof works also for a RTC, see [4].



subtree of gt−l. On the other hand, it is possible that the
decoding procedure outputs a node u which is a descendant
of gt−l, yet does not minimize the Hamming distance. This
happens when the decoding procedure explores a smaller
subtree, i.e., i > t− l.

The following proposition bounds the probability for a
decoding error of magnitude l.

Proposition 6.1. Assume a SBTC is used to communicate
the string W (v) over a BSC. Using the efficient decoding
procedure (with some constant α ∈ (0, 1)), the probability
for a specific user to make a decoding error of magnitude l

is bounded by 2
(

4d
|S|

)l
+ 2

(
2d
|S|1−α

)l
, assuming an error

correction code with (label) error probability p < |S|−2.

Proof: A decoding error of magnitude l occurs if the
decoding process outputs a node u 6= v, such that the
common ancestor of u, v is l levels away. Such an error
can happen due to one of the following reasons:

(i) For the received string r = r1r2 . . . rl it holds that
∆(r,W (u)) ≤ ∆(r,W (v)). This happens when the
Hamming distance ∆(W (u),W (v)) is j = 0, 1, . . . , l
and more than j/2 channel errors occurred.

(ii) The decoding process did not return the node that
minimizes the Hamming distance.

Note that we only need to consider the paths from root to u
and to v and thus use the 2N -wise independence of the tree’s
labels. Recall that the probability to have a specific set of
l < 2N labels is 2−cN log |S| away from uniform with c =
O(1), and that the probability for a given Hamming distance
between W (u) and W (v) is bounded by Lemma 3.4. Let
p < |S|−2 be the maximal label error of the channel, and
for i ∈ N let Ei be the event that at least i channel (symbol)
errors have occurred. Using a union bound for every possible
node u, the probability of part (i) is bounded by

Pr[ Error of magnitude l ]

≤
∑
u

l∑
j=0

Pr[∆(W (v),W (u)) = j] Pr[Ej/2]

≤ dl
l∑

j=0

2

(
l

l − j

)(
1

|S|

)l−j l∑
k=j/2

(
l

k

)
pk(1− p)l−k

≤ 2 · dl
l∑

j=0

(
l

l − j

) l∑
k=j/2

(
l

k

)
|S|j−l|S|−2k

≤ 2 · dl · 2l · 2l · |S|−l ,

which is exponentially small in l as long as |S| > 4d.
For part (ii), note that the decoding process does not

output the node that minimizes the Hamming distance if
l > t− i, for i determined by the decoding procedure.
For the output node u, ∆(rt−l+1 · · · rt,Wl(u)) < αl/2.
However, since u does not minimize the Hamming distance,
there must exist a node z of distance at most l, such that

∆(Wl(z), rt−l+1 · · · rt) ≤ ∆(rt−l+1 · · · rt,Wl(u)). By the
triangle inequality, ∆(Wl(z),Wl(u)) ≤ αl. Using the union
bound for any possible z and any possible Hamming distance
up to αl, we bound the probability of this event by

dl
αl∑
j=0

2

(
l

l − j

)
|S|−(l−j) ≤ 2(2d)l|S|−l(1−α) .

A union bound on the two cases completes this proof.
We stress that the above decoding process always outputs

the correct node (i.e., the node that minimizes the Hamming
distance), if the transmitted node is not α-bad. For that
reason, the proof of Theorem 5.2 is still valid, since it only
requires the decoding procedure to succeed when the node is
not α-bad (and assumes that the simulation has a bad move
in each node which is a bad node).

We now show that this procedure is efficient in expec-
tation. Let L(t) be the depth of the subtree explored at
time t. The decoding process takes O

(∑N
t=1 d

L(t)
)

steps
(this dominates terms of O(L(t)) required to maintain the
guess, etc).

For a time t, if L(t) = l then ∆(rt−l+1 · · · rt,Wl(gt)) ≥
αl/2 yet for l′ > l, ∆(rt−l′+1 · · · rt,Wl′(gt)) < αl′/2,
thus ∆(rt−l+1 · · · rt,Wl(gt)) = dαl/2e. Let the transmitted
sequence of labels be W (v) for some node v of depth t. A
Hamming distance of exactly dαl/2e happens with proba-
bility at most

≤
l∑

j=0

Pr[∆(Wl(gt),Wl(v) = j] Pr[E|dαl/2e−j|]

≤
l∑

j=0

2

(
l

l − j

)(
1

|S|

)l−j l∑
k=|dαl/2e−j|

(
l

k

)
pk(1− p)l−k,

which is bounded by 22l+1|S|−l(1−α/2) for p < |S|−2.
With a sufficiently large yet constant alphabet, e.g., |S| >

(8d)1/(1−α/2), we bound the probability that L(t) equals l
to be 2−γl < d−l. The expected running time is then given

by O
(∑N

t=1E
[
dL(t)

])
, which equals

O

( N∑
t=1

t∑
l=0

[
2−γldl

])
= O

( N∑
t=1

2γ

2γ − d

)
= O(N).

We repeat the simulation step for N = O(T ) times, and the
computation is efficient in expectation. Finally, we mention
that [12] presents a data structure which allows us to perform
the above decoding procedure with overhead O(L(t)).

6.2. Simulating an adaptively chosen protocol

For a given protocol, Simπ fails with exponentially small
probability that depends on the choice of the SBTC and
the BSC errors. What if an adversary can choose the
protocol after observing our choice of a SBTC? In principle,



the adversary can force the simulation to travel through
the “bad” regions in the tree that require exploring large
subtrees.

We can remdy this situation by re-randomizing our potent
tree code during the simulation. We are able to extend the
basic scheme Simπ to the stronger notion of an adversarially
chosen protocol, and prove the following theorem.

Theorem 6.2. Except for probability 2−Ω(T ) over the choice
of the SBTC, there exists an efficient scheme to simulate any
2-party protocol π of length T , with success probability at
least 1− 2−Ω(T ) over the channel errors.

In order to ensure the actual traversed path in the State-
Tree is fully random, we permute the nodes of the State-
Tree separately for each level. The users need to communi-
cate which permutation is used for each level, which is done
by sending the specific permutation in use via additional
(potent) tree code, which we call the RandomnessTree.

Define the RandomnessTree to be a SBTC of degree d!
(for our case d = 12). For a specific node, each one of
the d! children denotes one of the possible permutations on
d values. Each round, the user chooses a random permutation
by randomly selecting one of the children of his current
position in the RandomnessTree (starting from the root).
Recall that each node in the StateTree has d = 12 children
where each represents one of {00x0, 00x1, . . .}. We can
assume a fixed order, that is, the first child always repre-
sents 00x0, the second represents 00x1, etc. For a time t,
assume the chosen permutation is Pt. In our randomized
simulation, the ith child in the StateTree has the meaning
Pt(i). For instance, the first node represents the meaning
Pt(1) ∈ {00x0, 00x1, . . .}.

We defer the complete description of the adapted scheme,
Randomized-Simπ , and the proof of Theorem 6.2 to the full
version of our paper.

6.3. Greater Potency and Improved Multiparty Protocols
In this section we give a construction of a d-ary (ε, α)-

potent tree of depth N which, for a constant α and an
arbitrary ε, requires a constant-size alphabet and fails with
probability 2−Ω(εN).

Theorem 6.3. For a constant α ∈ (0, 1) and arbitrary ε,
there exists an efficient and explicit construction of a d-
ary (ε, α)-potent tree-code of depth N over a constant-size
alphabet S, such that the labels of any two divergent paths
of length k ≤ N are almost k-independent. The construction
fails with probability at most 2−Ω(εN).

If we set ε = O(1/m), then this construction along
with the analysis of Theorem 5.4 immediately yields the
following result.

Theorem 6.4. There exists a constructible and efficient
simulation that computes any m-party protocol π (in which
the maximum connectivity is r) of length T over a BSC.
The simulation achieves dilation O(log(r + 1)) and takes

O(T ) rounds. The simulation fails with probability at most
2−Ω(T/m).

Most bad paths in a SBTC are short but if we could ensure
that all short paths (say, paths of logarithmic length) are
good, our potent tree codes would be more potent. Indeed,
we can accomplish this by concatenating the labels of two
tree codes T1 and T2. We construct tree code T1 over a
constant sized alphabet in which the distance property is
satsified for any two paths of logarithmic length using an
efficient deterministic method by Schulman [13]. We then
construct a SBTC T2 using a linear amount of randomness
for which the number of bad paths is small. Furthermore,
the number of long, bad paths is even smaller and hence
concatenating the labels of T1 and T2 results in a more potent
tree code.
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